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Abstract. Object detection is a field in machine learning that requires heavy computations. Some object detection 
applications such as vehicles or traffic detection require fast inference due to the nature of their input data. This requirement 
for heavy computing is not suitable for edge computers like Raspberry Pi that only have limited computing resources. One 
of the common frameworks used for machine learning, Tensorflow provides a specific package dedicated to being used in 
edge computing called Tensorflow Lite. This paper aims to present a performance comparison of these two frameworks on 
a Raspberry 4 Pi model B board. This paper focuses on the latency and memory usage differences between the two 
frameworks. The result of the comparison process shows an average of 90 percent increase in inference speed on 
Tensorflow Lite with MobileNet models compared to the Tensorflow framework. The initial inference on Tensorflow Lite 
is also significantly faster on both MobileNetV1, MobileNetV2, InceptionV2, and Resnet 50 models with an average of 
124 percent increase. Moreover, the memory usage for all tested models is reduced by half on average when using 
Tensorflow Lite compared to the original Tensorflow model. This performance increase can be taken into consideration to 
increase the performance of object detection in edge computers. 

INTRODUCTION 

Nowadays, traffic monitoring has become a challenge due to the increasing number of vehicles and transportation 
infrastructure. The increase in vehicle numbers requires an automated solution for traffic surveillance. Automatic 
vehicle detection is part of computer vision that has become a popular research field. Vehicle detection systems can 
help reduce the manual task for monitoring the traffic. However, processing a computer vision algorithm usually needs 
a machine with high computational capabilities, thus limiting the application of the system on stationary computers 
such as server workstations or personal computers. The limitations of such computers are that they are not mobile. On 
top of that, processing computer vision algorithms on a server is not an option in an area with poor internet coverage. 

Even though edge devices like Raspberry Pi tend to have lower performance compared to MacBook Pro, FogNode, 
Jetson TX2 and Nexus 6P, they are more cost efficient [1]. Edge devices are also part of modern life indicated by at 
least 90 percent mobile phone  penetration in the market [2]. It is also indicated by the increasing trends of Internet of 
Things (IoT), popularized alongside Artificial Intelligence and Cloud Computing as Industrial Revolution 4.0. 

In recent years, edge devices such as Raspberry Pi have seen a rise in computer vision applications. Lots of research 
have been done to optimize the implementation of computer vision algorithms on edge devices. Edge device utilization 
can reduce processing latency because it does not require external data transmission. Aside from that, utilizing edge 
devices can reduce power consumption [3] when doing computation tasks as shown in Figure 1. 

An increase in demand for computer vision implementation in the edge led to more efficient, lightweight, and 
simpler neural network architectures. To accommodate such trends, machine learning frameworks like Tensorflow 
release frameworks that are dedicated to edge inferencing called Tensorflow Lite. TensorFlow itself already supports 
a variety of devices including multicore CPUs, general-purpose GPUs, and custom-designed ASICs known as Tensor 
Processing Units (TPUs) [4]. The release of Tensorflow Lite helps edge devices to achieve similar task, even with 
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some tradeoffs. Tensorflow Lite uses an optimized version of inference models. It is designed to be lightweight, fast, 
and supports multiple edge platforms (mobile and embedded devices). 

 Even though numerous researches have already utilized Tensorflow Lite in embedded computer vision 
applications, only a few researches has measured its effectiveness and efficiency compared to the original Tensorflow 
framework. Research conducted by Chunjie Luo et al. in 2020 compares the performance of different mobile machine 
learning frameworks and models on several smartphones [5]. Another experiment performed by Xingzhou Zhang et 
al. in 2018 compares several machine learning frameworks' performances on various edge device types [1]. The result 
of their research can show the performance metric comparison between the tested frameworks. Unfortunately, the 
comparison between the original frameworks and their mobile version counterparts is still not identified in detail. 

Our experiments in this paper focus on the performance comparison between the Tensorflow Framework and its 
Lite. The runtime workloads in our inference experiments cover several different popular object detection models. 
The experiment result will be able to help understanding the advantages and disadvantages between the two 
frameworks mentioned before. 
 

 
FIGURE 1. Energy consumption of Raspberry Pi compared to other devices (kJ/h)  

METHOD 

Device Specifications 

Our experiments use the Raspberry Pi 4 model B board with 4 GB of RAM capacity. Generally, Raspberry Pi 4 
model B uses Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC processor with clockspeed of 
1.5GHz for each of its cores [6]. We powered our Raspberry Pi board through the USB-C port. The file storage used 
is a 16 GB SanDisk Ultra MicroSDHC inserted directly to the MicroSD slot on the Raspberry Pi board. The script 
used for inference are run through SSH connection to the Raspberry Pi board. 

Frameworks 

TensorFlow is a popular machine learning framework that provides support for machine learning that is adopted 
widely. TensorFlow uses dataflow graphs to represent computation, shared state, and the operations that mutate that 
state. Tensorflow supports parallel computation because it maps the nodes of a dataflow graph across many machines 
in a cluster. On top of that, it also maps them within a machine across multiple computational devices, including 
multicore CPUs, general-purpose GPUs, and custom-designed ASICs known as Tensor Processing Units (TPUs) [4]. 
Models created in Tensorflow can also be executed across different environments. Tensorflow was published and 
maintained by Google. 
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Tensorflow Lite is the successor of Tensorflow Mobile. Tensorflow Mobile was initially developed by Google to 
accommodate running machine learning algorithm on mobile devices. Because machine learning algorithm execution 
is computationally expensive, Tensorflow Mobile and Tensorflow Lite uses model optimization to improve execution 
performance. 

Tensorflow Lite models are converted from a regular Tensorflow model (SavedModel) or Keras model using the 
Tensorflow Lite Converter tool provided by Tensorflow package [7]. The conversion result is a model file format 
based on Flatbuffers that can be used for inferencing on edge devices (Figure 2). 

 

 
FIGURE 2. Tensorflow Lite architecture 

Models 

The development of machine learning models has been increasing rapidly in the recent times. Several research has 
proposed different models each with its own unique approach. The models that are used for performance comparison 
in this paper are MobileNet V1, MobileNet V2, InceptionV2, and ResNet50 (Figure 3). Tensorflow Lite supports SSD 
models and CenterNet models, but we only use SSD models in our experiments. All model used in this paper is 
downloaded from tensorflow model zoo and converted directly to Tensorflow Lite model file (tflite). 

MobileNet is a series of models designed and optimized for applications on mobile or embedded devices. It was 
proposed by Google researchers starting with the first version in 2017 [8], the second in 2018 [9], and the third version 
in 2019 [10]. MobileNet efficiently trades off between the inference latency and its accuracy. The MobileNet model 
is based on depthwise separable convolutions. Depthwise separable convolutions is a form of factorized convolutions 
which factorize a standard convolution into a depthwise convolution and a 1×1 convolution called a pointwise 
convolution. The pointwise convolution applies a 1x1 convolution to capture the relationship of each feature in every 
channel. MobileNets structure is mostly built with depthwise separable convolutions except for the first layer which 
is in the form of a full convolution. We choose this model because of its extensive use in edge inferencing. 

Inception was initially called GoogLeNet [11]. It was also a model proposed by Google. GoogLeNet won the task 
of classification and detection in the ILSVRC (ImageNet Large-Scale Visual Recognition Challenge [12]) 2014. 
GoogLeNet uses filter sizes of 1x1, 3x3 and 5x5 in different branches to capture multi-scale information of the feature. 
Its architecture design is mainly considers computational efficiency and practicality. InceptionV2 factorizes the 5x5 
convolution to two 3x3 convolution operations to improve computational speed [13]. InceptionV3 that was proposed 
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in the same paper factorizes 7x7 convolution operations to three 3x3 convolution operations with the same objective. 
InceptionV4 remove its predecessors complexity by making the model more uniform. The same paper for InceptionV4 
also introduces a hybrid inception module that was inspired by the performance of ResNet. In our experiment, we 
choose InceptionV2 as the model used in performance comparison. 

 

 
FIGURE 3. (a) Common structure of MobileNetV1, (b) ResNet50, (c) MobileNetV2, and (d) Inception model 

 
ResNets model or Deep Residual Network model has a structure consisting of many stacked “Residual Units”[14]. 

It was proposed by Microsoft researchers in 2015. It won the ILSVRC [12] 2015 and MS COCO (Microsoft Common 
Objects in Context [15]) 2015 competitions on the tasks of ImageNet classification, ImageNet detection, ImageNet 
localization, COCO detection, and COCO segmentation. ResNets model helps the training of a very deep networks 
where their gradients, in some cases, will become relatively small (vanishing gradient problem). Variants of ResNets 
model has been released several times later. In our experiment, we chose to use the ResNet50 model because of its 
popularity. General expression of each residual unit can be seen in Equation 1. 
 

𝑦! = ℎ(𝑥!) + 𝐹(𝑥! ,𝑊!), 
𝑥!"# = 𝑓(𝑦!) 

(1) 

where 𝑥! and 𝑥!"# are input and output of the l-th unit, and 𝐹 is a residual function. Figure 3b shows the common 
structure of ResNet50 model.  

RESULT AND DISCUSSION 

Metric 

This paper calculated the performance of each framework coupled with several different models during execution 
time. This paper focuses on the inference latency consisting of initial inference time, average time per inference, and 

(a) (b) 

(d) (c) 

020129-4

D
ow

nloaded from
 http://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0120245/17411936/020129_1_5.0120245.pdf



the total time needed for the inference loop. Aside of that, this paper also compares the memory usage of each 
framework when running several different models. 

The time per inference is calculated by utilizing the “time” function in the python script. The first inference interval 
took relatively longer due to initialization and thus discarded from the average inference time and only printed to the 
console interface. The inference loop is run 1000 times to avoid errors. The average time for each iteration is then 
calculated and printed as the average time per inference. 

The memory usage is calculated using the “top” command from the terminal. The shown percentage of usage is 
then multiplied with the total RAM presents on the Raspberry Pi board. The estimated result is then used to compare 
the memory footprint of each framework during inference. 

Experiment Result 

The result of the experiment is shown on Table 1. The presented result shows significant increase of initial 
inference time on Tensorflow Lite compared to Tensorflow. The result on all models favors Tensorflow Lite over the 
original Tensorflow framework. The graphical comparison of the result can be seen in Figure 4. 

 
TABLE 1. Initial inference time in miliseconds 

Framework SSD MobileNetV1 SSD MobileNetV2 SSD InceptionV2 SSD ResNet50 
Tensorflow 9794.66 18648.57 20919.55 47467.64 

Tensorflow Lite 231.28 347.86 1497.60 13413.06 
 

 
FIGURE 4. Initial inference time with Tensorflow and Tensorflow Lite 

 
Meanwhile, the average inference time after 1000 inference iterations (except for the first iteration) varies between 

the model used. Using MobileNetV1 model, we can achieve 1.5x faster inference time with Tensorflow Lite compared 
to the original Tensorflow. Using the MobileNetV2 model with Tensorflow Lite, we can achieve a bigger inference 
time margin with more than 2x faster inference time compared to using Tensorflow. As for the ResNet50, the inference 
time is only slightly faster on Tensorflow Lite than Tensorflow. However, when using InceptionV2 model, the 
inference time is faster on Tensorflow compared to Tensorflow Lite. The average inference time for each framework 
with several tested pretrained models are shown in Table 2. 
 

TABLE 2. Average inference time in miliseconds 
Framework SSD MobileNet V1 SSD MobileNetV2 SSD InceptionV2 SSD ResNet50 
Tensorflow 273.39 551.30 760.51 11080.80 
Tensorflow Lite 176.48 243.13 852.53 10888.44 

 
When comparing the memory usage of both frameworks, Tensorflow Lite uses around half the memory used by 

Tensorflow with the same model (Figure 5). This reduced memory usage is good news for edge devices with relatively 
smaller memory capacity to run the algorithm. 

0

10000

20000

30000

40000

50000

MobileNetV1 MobileNetV2 InceptionV2 Resnet50

Tensorflow TensorflowLite

020129-5

D
ow

nloaded from
 http://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0120245/17411936/020129_1_5.0120245.pdf



 
FIGURE 5. Memory usage for when running each model with Tensorflow and Tensorflow Lite 

CONCLUSION 

The comparison process that consists of latency comparison and memory usage comparison on Raspberry Pi 4 
model B shows that Tensorflow Lite improves the performance of inference on the tested board. The low initial 
inference time needed by Tensorflow Lite can be considered when implementing an object detection that requires 
quick inference startup. Although average of inference time when using InceptionV2 model and Resnet50 model does 
not show a great difference, using models dedicated for edge inferencing will improve the performance as we can see 
with MobileNet models. Moreover, the small memory footprint of Tensorflow Lite can also be considered when 
running object detection algorithm on devices lower memory. These results should be considered when doing 
inference on edge devices, such as Raspberry Pi 4. 
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