USULAN PENELITIAN DOSEN PEMULA

Diajukan oleh:

Bagiyo Condro Purnomo, ST, M.Eng (Ketua Tim) NIDN. 0617017605 Muji Setiyo, ST. MT (Anggota) NIDN. 0627038302

UNIVERSITAS MUHAMMADIYAH MAGELANG 2015

USULAN PENELITIAN DOSEN PEMULA

PENENTUAN PUTARAN BLOWER OPTIMUM SISTEM AC MOBIL DENGAN REFRIGERAN CAMPURAN MUSICOOL DAN CO₂ (Untuk Menunjang Program Penggunaan Refrigeran Ramah Lingkungan)

Diajukan oleh:

Bagiyo Condro Purnomo, ST., M.Eng. (Ketua Tim) NIDN. 0617017605 Muji Setiyo, ST., MT (Anggota) NIDN. 0627038302

UNIVERSITAS MUHAMMADIYAH MAGELANG 2015

DAFTAR ISI

USULA	N	i
DAFTAI	R ISI	ii
HALAM	AN PENGESAHAN	iv
RINGKA	ASAN	۱
BAB I P	PENDAHULUAN	1
1.1.	Latar belakang	1
1.2.	Perumusan Masalah	3
1.3.	Tujuan Penelitian	3
1.4.	Luaran penelitian	3
1.5.	Kontribusi (Manfaat) terhadap ilmu pengetahuan	3
BAB II 7	TINJAUAN PUSTAKA	4
2.1.	Refrigerasi dan Sistem Refrigerasi	4
2.2.	Refrigeran	8
2.3.	Modifikasi Siklus	11
BAB 3. N	METODE PENELITIAN	13
3.1.	Tahapan (road map) penelitian	13
3.2.	Lokasi penelitian	15
3.3.	Variabel penelitian	15
3.4.	Rancangan percobaan	15
3.5.	Teknik pengumpulan dan analisis data	16
BAB 4. I	BIAYA DAN JADWAL PENELITIAN	17
4.1.	Anggaran Biaya	17
4.2.	Jadwal Penelitian	17
DAFTAI	R PUSTAKA	18
Lampira	n 1. Justifikasi Anggaran Penelitian	19
Lampira	1 2. Susunan organisasi tim peneliti dan pembagian tugas	21
Lampira	1 3. Biodata ketua dan anggota	22
Lampira	n 4. Surat pernyataan ketua peneliti	31

HALAMAN PENGESAHAN

Judul Kegiatan

: PENENTUAN PUTARAN BLOWER OPTIMUM SISTEM AC MOBIL DENGAN REFRIGERAN CAMPURAN MUSICOOL DAN CO2

(Untuk Menunjang Program Penggunaan Refrigeran Ramah Lingkungan)

Kode/Nama Rumpun Ilmu : 438 / Teknik Refrigerasi

Ketua Peneliti

: BAGIYO CONDRO PURNOMO ST A. Nama Lengkap

: 0617017605 B. NIDN C. Jabatan Fungsional : Asisten Ahli D. Program Studi : Mesin Otomotif E. Nomor HP : 081392778707 F. Surel (e-mail) : superbgy@yahoo.com

Anggota Peneliti (1)

A. Nama Lengkap : MUJI SETTYO ST., MT.

B. NIDN : 0627038302

C. Perguruan Tinggi : Universitas Muhammadiyah Magelang

Lama Penelitian Keseluruhan : 1 Tahun Penelitian Tahun ke

Biaya Penelitian Keseluruhan : Rp 19.750.000,00

MUHAMMAD

: - diusulkan ke DIKTI Biaya Tahun Berjalan Rp 15.000.000,00 - dana internal PT Rp 4.750.000,00

- dana institusi lain Rp 0,00

- inkind sebutkan

Magelang, 30 - 4 - 2015,

Ketua Peneliti

(BACYO CONDRO PURNOMO ST)

NIP/NIK \$ 7606031

Oesy an Raliby, ST.,

AS TEKNIK NEW NIK 966806113

Mangetahui

Menyetujui, Keti)a LP3M

ூr. Suliswiyadi, M.Ag)

VIP/NIK 966610111

RINGKASAN

Tujuan umum penelitian ini adalah mengganti (retrofit) refrigeran yang berpotensi ODP dan GWP (R-134a) dengan refrigerant Musicool yang ramah lingkungan dalam mesin AC mobil. Tujuan khusus dari penelitian ini adalah untuk mengetahui pengaruh putaran blower terhadap unjuk kerja dari sistem refrigerasi dengan refrigeran campuran Musicool-CO2. Target dari penelitian ini adalah untuk menentukan putaran blower yang optimum pada sistem AC mobil dengan menggunakan refrigerant Musicool-CO2 sehingga diketahui unjuk kerja sistem AC mobil yang optimum.

Metode yang digunakan dalam penelitian ini adalah metode eksperimen. Lingkup penelitian ini mencakup tiga variabel yaitu komposisi refrigerant, putaran blower dan putaran kompresor. Pada konfigurasi tersebut dilakukan pengukuran temperatur, tekanan dan aliran massa refrigeran.

Penelitian ini terdiri dari tiga tahapan, yaitu tahap persiapan penelitian, tahap pengujian mesin (pengambilan data), dan tahap analisis data. Masing masing tahapan mencakup jenis kegiatan, indikator capaian, dan luarannya. Tahap persiapan penelitian mencakup kegiatan observasi lapangan, desain alat uji, membuat rancangan percobaan, dan menyiapkan material. Tahap pengambilan data mencakup kegiatan pengujian alat uji. Tahap analisis data mencakup kegiatan pengolahan data, perhitungan *coefficient of performance* (COP), efek refrigerasi dan kerja kompresi serta penyajian data hasil penelitian. Luaran dari penelitian ini berupa publikasi ilmiah.

Kata kunci: reftrofit, refrigerant Musicool, refrigeran CO2

BAB I PENDAHULUAN

1.1. Latar belakang

Sistem refrigerasi telah memainkan peran penting dalam kehidupan sehari-hari, tidak hanya terbatas untuk peningkatan kualitas dan kenyamanan hidup, namun juga telah menyentuh hal-hal esensial penunjang kehidupan manusia. Teknologi ini banyak diaplikasikan untuk penyimpanan dan pendistribusian makanan, penyejuk udara untuk kenyamanan ruangan baik pada industri, perkantoran, transportasi, dan rumah tangga. Sistem refrigerasi kompresi uap merupakan sistem refrigerasi yang paling banyak dipakai dalam proses pendinginan, pembekuan, dan penyejuk udara.

Mesin refrigerasi merupakan peralatan konversi energy yang mentransfer kalor dari media bertemperatur rendah ke media bertemperatur tinggi dengan menggunakan kerja dari luar system. Perkembangan system pengkondisian udara terjadi baik pada system refrigerasi dan pada fluida kerja atau refrigerannya.

Perkembangan dibidang refrigeran juga didorong oleh dua masalah lingkungan, yakni penipisan lapisan ozon (ODP) dan pemanasan global (GWP). Sifat merusak lapisan ozon yang dimiliki oleh refrigeran dalam kelompok halocarbon yang termasuk didalamnya yaitu CFC dan HCFC. Refrigerant yang berpotensi untuk meningkatkan pemanasan global yaitu halocarbon dalam kelompok HFC.

Protocol montreal merupakan perjanjian internasional untuk mengatur dan melarang penggunaan zat-zat perusak ozon, sedangkan protocol Kyoto adalah sebuah persetujuan untuk mengatur dan mengurangi gas-gas penyebab terjadinya efek rumah kaca yang ditengarai menimbulkan pemanasan global (GWP). Apabila kedua protocol tersebut dilaksanakan secara bersama-sama maka secara umum tidak ada refrigerant komersial yang dapat dipakai kecuali refrigerant alami atau natural.

Refrigeran natural adalah refrigerant yang langsung berasal dari alam dan tidak memiliki dampak yang buruk terhadap lingkungan, tetapi beberapa refrigerant memiliki efek samping bagi penggunanya seperti karena kadar racun yang tinggi dan mudah terbakar. Refrigerant natural yang biasa digunakan adalah air, udara, gas mulia, hidrokarbon, amonia dan karbondioksida.

Refrigerant yang mempunyai potensi untuk mengganti refrigerant kelompok halokarbon adalah salah satunya refrigerant hidrokarbon. Musicool adalah salah satu refrigeran hidrokarbon yang mempunyai kelebihan jika dibandingkan dengan bahan pendingin Freon (R-12, R-22, R134a) antara lain:

- 1. Dapat menurunkan konsumsi tenaga listrik
- 2. Tidak perlu penggantian/penambahan komponen pada Mesin AC
- 3. Kerja kompresor menjadi lebih ringan
- 4. Effek pendinginan lebih baik
- 5. Ramah lingkungan (Tidak merusak lapisan Ozon dan Tidak meningkatkan pemanasan global)

Musicool memiliki sifat mudah terbakar, sehingga harus dicampur dengan refrigeran yang lain supaya menurunkan tingkat mampu bakar tersebut, salah satu usaha adalah dengan mencampur musicool dengan senyawa inhibitor, yakni suatu senyawa yang dapat menghambat laju reaksi pembakaran. Gas inert, seperti nitrogen (N2) dan karbondioksida (CO2), dapat berfungsi sebagai inhibitor dalam reaksi pembakaran. Penelitian sebelumnya menunjukkan bahwa gas N2 dan CO2 mampu menurunkan batas mampu nyala dan kecepatan pembakaran dari hidrokarbon (Liao S. , dkk., 2005). Penelitian tersebut menjelaskan bahwa CO2 memiliki kemampuan sebagai inhibitor yang lebih baik dibandingkan dengan N2, sehingga memiliki potensi untuk digunakan sebagai gas inhibitor dalam penggunaan hidrokarbon sebagai refrigeran.

Makalah ini berisi informasi retrofit mesin AC dengan refrigeran Musicool-CO₂. Penelitian ini juga berisi pengaruh putaran putaran blower terhadap unjuk kerja dari mesin AC dengan refrigeran Musicool-CO₂.

Pengambilan data dengan variasi komposisi campuran Musicool-CO₂ dan putaran kompresor.

1.2. Perumusan Masalah

Penggunaan refrigeran sintetik merupakan contributor terhadap kerusakan lingkungan yaitu menjadikan perusakan ozon dan pemannasan global. Untuk itu dilakukan penggantian refrigeran sintetik dengan refrigeran yang ramah lingkungan salah satunya adalah Musicool. Musicool merupakan refrigeran hidrokarbon sehingga mempunyai sifat mudah terrbakar untuk itu harus dicampur dengan senyawa inhibitor (CO₂) guna mengurangi sifat tersebut. Penggunaan CO₂ sebagai inhibitor akan mengubah performa dari sintem refrigerasi tersebut, sehingga perumusan masalah dari penelitian ini adalah pengaruh putaran blower terhadap unjuk kerja dari sistem tersebut.

1.3. Tujuan Penelitian

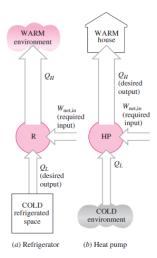
Tujuan umum penelitian ini adalah mengganti (*retrofit*) refrigeran yang berpotensi ODP dan GWP (R-134a) dengan refrigerant Musicool yang ramah lingkungan dalam mesin AC mobil.

Tujuan khusus dari penelitian ini adalah untuk mengetahui pengaruh putaran blower terhadap unjuk kerja dari sistem refrigerasi dengan refrigeran campuran Musicool-CO2.

1.4. Luaran penelitian

Target luaran yang ingin dicapai melalui kegiatan penelitian ini adalah Publikasi ilmiah.

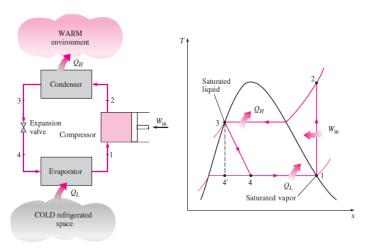
1.5. Kontribusi (Manfaat) terhadap ilmu pengetahuan


Hasil penelitian ini diharapkan dapat membantu merumuskan komposisi campuran refrigeran Musicool-CO₂ yang memeiliki unjuk kerja terbaik dengan berbagai variasi penelitian. Selain itu dapat membantu mengurangi proses penipisan lapisan ozon (ODP) dan pemanasan global (GWP) yang mengakibatkan kerusakan lingkungan.

BAB II TINJAUAN PUSTAKA

2.1. Refrigerasi dan Sistem Refrigerasi

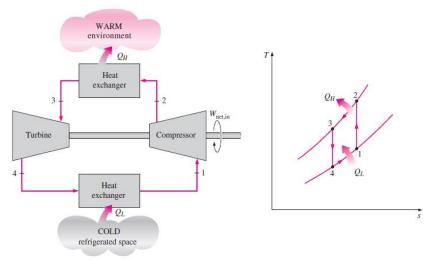
Refrigerasi merupakan proses memindahkan energi panas dari daerah bertemperatur rendah ke daerah yang bertemperatur lebih tinggi. Biasanya daerah pembuangan (*heat sink*) bertemperatur tinggi adalah lingkungan, atau air pendingin yang memiliki temperatur sama dengan temperatur lingkungan (ASHRAE, 2009).


Siklus refrigerasi adalah siklus kerja yang mentransfer kalor dari media bertemperatur rendah ke media bertemperatur tinggi dengan menggunakan kerja dari luar system. . Secara prinsip merupakan kebalikan dari siklus mesin kalor (heat engine). Dilihat dari tujuannya maka alat dengan siklus refrigerasi dibagi menjadi dua yaitu refrigerator yang berfungsi untuk mendinginkan media dan heat pump yang berfungsi untuk memanaskan media. Ilustrasi tentang refrigerator dan heat pump dapat dilihat pada gambar di bawah.

Gambar 1. Sistem refrigerasi dan pompa kalor (Cengel & Boles, 2008)

Sistem refrigerasi merupakan kombinasi komponen, peralatan, dan perpipaan, yang dihubungkan dalam urutan tertentu untuk menghasilkan efek pendinginan. Sistem refrigerasi secara garis besar dapat diklasifikasikan menjadi beberapa sistem, diantaranya yaitu :

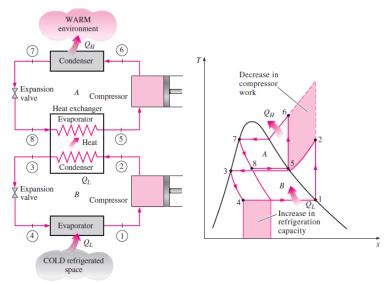
- 1. Siklus kompresi uap (*vapor compression refrigeration cycle*)
 Siklus refrigerasi kompresi uap adalah siklus yang paling banyak digunakan untuk lemari es, sistem AC, dan pompa panas. Siklus refrigerasi kompresi uap ideal dapat digambarkan dalam diagram *T-s* seperti gambar 2.2. Proses-proses yang terjadi adalah
 - 1-2 : Kompresi isentropis dalam kompresor
 - 2-3 : Pembuangan kalor secara isobaris dalam kondenser
 - 3-4 : *Throttling* dalam katup ekspansi atau tabung kapiler
 - 4-1 : Penyerapan kalor secara isobaris dalam evaporator



Gambar 2. Skema dan diagram T-S refrigerasi kompresi uap (Cengel & Boles, 2008)

Refrigeran masuk ke kompresor dalam kondisi uap jenuh dan keluar sebagai uap panas lanjut. Dalam kondenser refrigeran melepas kalor sehingga terjadi kondensasi sampai ke kondisi cairan jenuh. kemudian refrigeran masuk ke katup ekspansi dan mengalami proses pencekikan (*throttling*) sehingga terjadi penurunan tekanan dan berubah menjadi campuran jenuh. Selanjutnya refrigeran masuk ke evaporator untuk menyerap kalor sehingga terjadi proses evaporasi dan siap untuk dilakukan langkah kompresi berikutnya.

2. Siklus gas (gas refrigeration cycle)

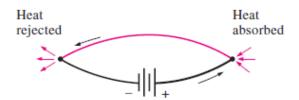

Sistem pendingin siklus udara tergolong dalam sistem pendingin siklus gas, di mana gas yang digunakan sebagai fluida kerja. Gas tidak mengalami perubahan fasa selama siklus, akibatnya semua proses internal perpindahan panas adalah proses perpindahan panas sensibel.

Gambar 3. Skema dan diagram T-S siklus refrigerasi gas (Cengel & Boles, 2008)

3. Siklus bertingkat (cascade refrigeration cycle)

Dimana merupakan gabungan lebih dari satu siklus refrigerasi. Sistem refrigerasi cascade, terdiri dari dua sistem refrigerasi siklus tunggal yaitu sistem pertama disebut high-stage (HS) dan sistem kedua disebut low-stage (LS). Kompresi bertingkat diperlukan jika perbandingan kompresi lebih dari 4 atau 5. Perbandingan kompresi menjadi tinggi apabila temperatur kerja kondensor tinggi dan atau temperatur kerja evaporator sangat rendah.

Gambar 4. Skema dan diagram T-S siklus refrigerasi bertingkat (Cengel & Boles, 2008)


4. Siklus absorpsi (absorption refrigeration cylce)

Sistem refrigerasi absorpsi melibatkan penyerapan zat pendingin dengan media transportasi. Sistem refrigerasi absorpsi yang paling banyak digunakan adalah sistem amonia-air, di mana amonia (NH_3) berfungsi sebagai pendingin dan air (H_2O) sebagai media transportasi.

Gambar 5. Skema dan diagram T-S siklus refrigerasi absorpsi (Cengel & Boles, 2008)

Siklus termoelektrik (thermoelectric refrigeration cycle)
Sistem refrigerasi Termoelektrik merupakan metode pendinginan yang berdasarkan pada efek seebeck. Ketika baterai dihubungkan antara dua konduktor, pada saat arus mengalir melalui rangkaian maka akan terjadi perubahan suhu di titik penghubung tersebut, dimana salah satunya menjadi panas dan yang lain menjadi dingin. Efek refrigerasi diperoleh di daerah penghubung yang dingin sedangkan pada daerah penghunbung yang panas kalor dibuang ke lingkungan.

Gambar 6. Skema siklus refrigerasi termoelektrik (Cengel & Boles, 2008)

2.2. Refrigeran

Refrigerant adalah fluida kerja di dalam mesin refrigerasi, pengkondisian udara, dan sistem pompa kalor. Refrigeran menyerap panas dari satu lokasi dan membuangnya ke lokasi yang lain, biasanya melalui mekanisme evaporasi dan kondensasi (ASHRAE, 2009).

Refrigeran terdiri dari beberapa macam tergantung subtansi pembentuknya atau komposisi kimianya, yaitu

- Kelompok halocarbon yaitu refrigeran yang berasal dari hidrocarbon
 (HC) dengan satu atau lebih atom H dalam Etana (CH₄), Metana
 (C₂H₆), atau Propana (C₃H₈) diganti dengan halogen (Cl, Br, F)
 - a. Jika seluruh atom H diganti oleh atom Cl dan F, maka refrigeran yang dihasilkan terdiri atas atom-atom C, F, dan Cl. Refrigeran ini disebut refrigeran **CFC** (**c**hloro**f**luoro**c**arbon)

- b. Jika hanya sebagian atom H yang diganti oleh atom Cl dan F,
 maka refrigeran ini disebut refrigeran HCFC
 (hydrochlorofluorocarbon)
- c. Refrigeran halocarbon yang tidak mengandung atom Cl disebut refrigeran **HFC** (hydrofluorocarbon)

2. Hidrokarbon HC

Hidrokarbon adalah senyawa organic yang terdiri dari hydrogen dan carbon, contohnya Etana (CH₄), Metana (C₂H₆), dan Propana (C₃H₈)

3. Natural

Refrigerant natural adalah yang langsung berasal dari alam contohnya Amonia (NH3), Air (H2O), Udara, CO2, SO2

Refrigerasi diklasifikasikan berdasar zeotrop dan azeotrop. Zeotrop yaitu campuran antara dua atau lebih refrigeran yang dapat dipisahkan dengan destilasi, Azeotrop yaitu campuran antara dua atau lebih refrigeran yang tidak dapat dipisahkan dengan destilasi.

Pemilihan refrigeran merupakan kompromi antara beberapa sifat-sifat termodinamik. Sebuah refrigeran harus memenuhi banyak persyaratan, beberapa diantaranya tidak langsung berhubungan dengan kemampuannya untuk mentransfer panas. Stabilitas kimia berdasarkan kondisi penggunaan merupakan ciri mutlak dari refrigerant. Beberapa sifat yang lain berhubungan dengan keamanan refrigerant seperti tidak mudah terbakar (non-flammable) dan tidak beracun saat digunakan merupakan sifat yang dibutuhkan. Harga, ketersediaan, efisiensi, dan kecocokan dengan pelumas kompressor dan bahan-bahan dari komponen-komponen system refrigerasi juga harus diperhatikan. Pengaruh refrigeran terhadap lingkungan apabila refrigeran tersebut bocor dari suatu sistem harus pula dipertimbangkan (ASHRAE, 2009).

ASHRAE Standard 34, refrigeran diklasifikasikan sesuai dengan bahaya yang terlibat dalam penggunaannya. Klasifikasi toksisitas dan mudah terbakar menghasilkan enam kelompok keamanan (A1, A2, A3, B1, B2, dan B3) untuk pendingin. Kelompok A1 refrigeran adalah yang paling

tidak berbahaya, Grup B3 yang paling berbahaya. Berdasarkan kadar racunnya refrigerant dapat digolongkan sebagai kelas A apabila memiliki kadar racun yang rendah dan refrigeran kelas B bila memiliki kadar racun yang lebih tinggi. Adapun kemudahan terbakar dari refrigeran dinyatakan sebagai kelas 1, apabila tidak dapat terbakar; kelas 2, apabila sukar untuk terbakar (LFL>0,1 kg/m3); dan kelas 3 apabila mudah terbakar (LFL<0,1 kg/m3). (ASHRAE, 2009).

Tabel 1. Penggolongan keamanan refrigeran

	A	В
	(Lower toxicity)	(Higher toxicity)
1 (No Flame propagation)	A1	B1
2 (Low Flamability)	A2	B2
3 (High flamability)	A3	В3

Beberapa sifat-sifat thermodinamik yang lain yang harus dimiliki oleh refrigerant antar lain yaitu :

- 1. Tekanan penguapan harus cukup tinggi
- 2. Tekanan pengembunan yang tidak terlalu tinggi
- 3. Kalor laten penguapan harus tinggi
- 4. Volume spesifik (terutama pada fase gas) yang cukup kecil
- 5. Konduktifitas termal yang tinngi
- 6. Viskositas yang rendah pada fase cair maupun gas
- 7. Tidak korosif, dan mempunyai sifat kimia yang stabil

Perkembangan dibidang refrigeran utamanya didorong oleh dua masalah lingkungan, yakni penipisan lapisan ozon (ODP) dan pemanasan global (GWP). Sifat merusak lapisan ozon yang dimiliki oleh refrigeran dalam kelompok halocarbon yang termasuk didalamnya yaitu CFC dan HCFC. Refrigerant yang berpotensi untuk meningkatkan pemanasan global yaitu halocarbon dalam kelompok HFC.

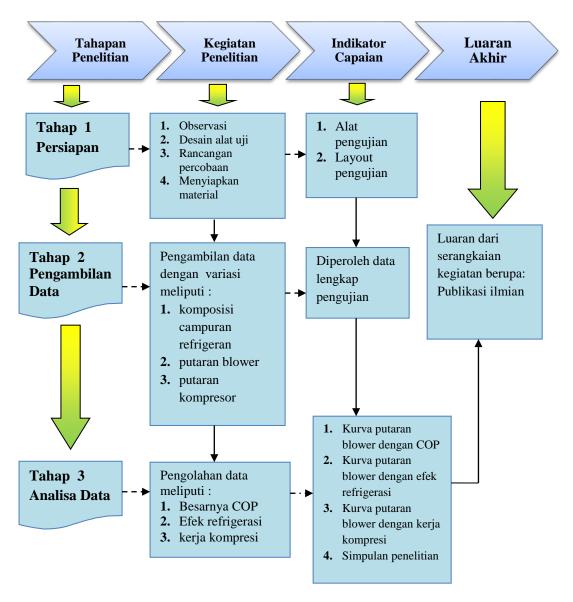
Protocol montreal merupakan perjanjian internasional untuk mengatur dan melarang penggunaan zat-zat perusak ozon , sedangkan protocol Kyoto adalah sebuah persetujuan untuk mengatur dan mengurangi gas-gas penyebab terjadinya efek rumah kaca yang ditengarai menimbulkan pemanasan global (GWP). Apabila kedua protocol tersebut dilaksanakan secara bersama-sama maka secara umum tidak ada refrigerant komersial yang dapat dipakai kecuali refrigerant alami atau natural.

Karbon dioksida (CO₂, R-744) adalah cairan tidak mudah terbakar, nontoxic (safety group A1 ASHRAE 2009), tidak berpotensi menimbulkan ODP dan GWP (table 1.1) serta dapat beroperasi disiklus kompresi uap. Dengan demikian, CO₂ memiliki potensi yang sangat besar sebagai refrigerant alternative dalam aplikasi otomotif pengganti R134a.

2.3. Modifikasi Siklus

(Domanski, Brown, Heo, Wojtusiak, & McLinden, 2013) VCC (vapor compression cycle) teoritis mempunyai beberapa variasi, yang pertama siklus satu tahap. Dibandingkan dengan siklus Carnot, VCC sederhana mengalami irreversible termodinamika terkait dengan proses throttling adiabatik dan desuperheating kompresi uap. Variasi yang paling umum dari VCC sederhana siklus dengan *liquid-line/suction-line exchanger* (LL/SL-HX). Variasi lain dari siklus VCC sederhana dengan economizer, ejector, dan *expansion work recovery device*. Tingkat perbaikan COP tergantung pada sifat termodinamika refrigeran dan variasi siklus, serta *Internal heat exchange cycle*.

Penggunaan IHX akan meningkatkan kinerja sistem pendingin CO₂. Sebuah penelitian meneliti variasi COP terhadap panjang dari IHX untuk berbagai kondisi operasi. Hasil penelitian mereka menunjukkan bahwa COP terhadap tekanan discharge rendah dan tinggi untuk panjang yang berbeda dari IHX menunjukkan tren yang berbeda. Pada tekanan *discharge* rendah, COP meningkat dengan meningkatnya panjang IHX, tetapi pada tekanan *discharge* tinggi, penurunan COP dengan meningkatnya panjang IHX. Hasil ini menunjukkan bahwa efek dari IHX pada COP berhubungan dengan tekanan *discharge* kompresor (Kim, Jo Kim, Lee, & Kim, 2005).


Kompresi dua tahap dan throttling dua tahap secara luas digunakan pada siklus terbalik konvensional sebagai sarana untuk meningkatkan efisiensi energi, hasil perbaikan terutama pada pengurangan kerugian exergy selama throttling, rasio tekanan berkurang sehingga akan meningkatan efisiensi kompresi isentropik, keuntungan lain yang signifikan dalam siklus transcritical, terkait dengan tahap pendinginan dengan pembuangan panas eksternal.

(Cecchinato, et al., 2009) Melakukan evaluasi termodinamika dan optimalisasi two-stage siklus karbon dioksida transcritical. Lima siklus yang berbeda yang dipelajari: basic single-stage cycle, single-throttling dengan two-stage compression cycle, split cycle, phase separation cycle and single-stage cycle coupled with a gas cooling circuit. Setiap siklus dasar dianalisa untuk efek perpindahan panas internal dengan berbagai aliran refrigeran. Setiap siklus dioptimalkan berkaitan dengan performa energi, menghitung nilai optimal dari tikanan tinggi dan tekanan menengah. Dalam kasus siklus split, rasio laju aliran massa dalam aliran utama dan yang ada di aliran tambahan juga dioptimalkan.

BAB 3. METODE PENELITIAN

3.1. Tahapan (road map) penelitian

Penelitian ini terdiri dari tiga tahapan, yaitu tahap persiapan penelitian, tahap pengujian mesin (pengambilan data), dan tahap analisis data. Masing masing tahapan mencakup jenis kegiatan, indikator capaian, dan luarannya disajikan dalam Gambar 7 berikut.

Gambar 7. Tahapan (road map) penelitian

Untuk melaksanakan serangkaian kegiatan penelitian sesuai dengan road map pada Gambar 7, dibutuhkan material dan peralatan penelitian sebagai berikut.

Tabel 2. Peralatan dan Material Penelitian

No	Nama Peralatan dan	Fungsi dalam Kegiatan	Cara
110	Material Penelitian	Penelitian	Pengadaan
1	Komponen utama		
	Kompresor		
	Kondensor		
	Receiver dryer	Warran and an arta was A.C.	D.1:
	Evaporator	Komponen utama AC	Beli
	Katup ekspansi		
	Blower		
	Fan		
2	Komponen pendukung		
	motor listrik		
	Pulley	Komponen penggerak	Beli
	belt		
	pipa tembaga	Komponen perpipaan	
3	Komponen alat ukur		
	Pressure gauge		
	Termometer		
	sensor temperatur	Peralatan alat ukur	Beli
	sensor tekanan	temperature, tekanan	Bell
	Massaflow meter		
	Data logger		
	Alat ukur kecepatan putar		
4	Komponen servis		
	Kompresor vacuum		
	needle valves tools		
	Detecting Leaks	Peralatan untuk servis	Sewa
	Manifold gauge		
	Refrigeration and appliance tools.		
5	Komponen konstruksi		
	Elektroda las		
	Kawat kuningan	Komponen pembuatan alat	Beli
	Oli kompresor		
	Besi konstruksi		
6	Komponen refrigeran		
	MUSICOOL-134	Komponen fluida kerja	Beli
	CO2		

3.2. Lokasi penelitian

Kegiatan penelitian dilaksanakan di gedung laboratorium terpadu Fakultas Teknik Universitas Muhammadiyah Magelang. Uraian lokasinya sebagai berikut:

1. Pengujian mesin: Laboratorium Motor bensin dan diesel

2. Pengolahan data: Laboratorium Komputer

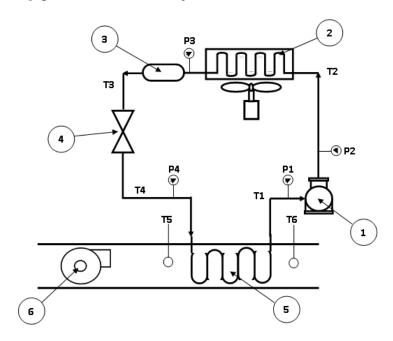
3.3. Variabel penelitian

Variabel bebas yang diteliti dan variasi rentang levelnya serta parameter yang diukur dalam penelitian ini disajikan dalam tabel berikut :

Tabel 3. Variabel penelitian dan parameter ukur

Variable bebas	Variable terukur
Komposisi refrigeran	Temperature
Putaran blower	Tekanan
Putaran kompresor	Laju aliran massa

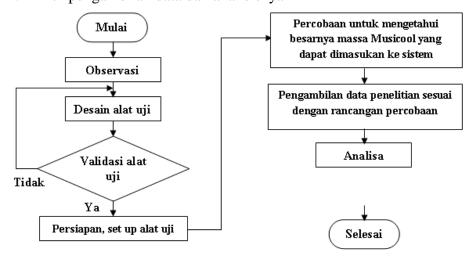
3.4. Rancangan percobaan


Lingkup penelitian ini mencakup tiga variabel yaitu komposisi refrigerant, putaran blower dan putaran kompresor. Pada konfigurasi tersebut dilakukan pengukuran temperatur dan tekanan pada setiap titik uji serta aliran massa refrigeran. Rancangan percobaannya sebagai berikut.

Tabel 4. Rancangan Percobaan (untuk komposisi campuran 1,5%, 3% dan 5% CO₂)

No	Putaran	Putaran blower	Parameter
	kompresor (rpm)		terukur
1	1000	Low	Temperature
		medium	Tekanan
		high	Massa flow rate
2	1500	Low	Temperature
		medium	Tekanan
		high	Massa flow rate
3	2000	Low	Temperature
		medium	Tekanan
		high	Massa flow rate

3.5. Teknik pengumpulan dan analisis data


1. Set up peralatan dan media uji

No	Keterangan	No	Keterangan
1	Kompresor	5	Evaporator
2	Kondensor	7	Blower
3	Flowrate meter	8	Internal Heat
			exchanger
4	Katup ekspansi		

Gambar 8. Set up peralatan dan madia uji

2. Alur pengambilan data dan analisisnya

Gambar 9. Alur pengumpulan data dan analisis data

BAB 4. BIAYA DAN JADWAL PENELITIAN

4.1. Anggaran Biaya

Tabel 5. Anggaran biaya

No	Komponen	Biaya yang D (Rp)))
1	Gaji dan Upah	4.000.000	20%
2	Bahan Habis pakai dan Peralatan	12.450.000	63%
3	Perjalanan	1.500.000	7%
4	Dokumentasi, Penyusunan Laporan, Penggandaan Laporan, Publikasi, dan lain- lain.	1.800.000	10%
	Jumlah	19.750.000	100%

4.2. Jadwal Penelitian

Tabel 6. Jadwal kegiatan

No	Jenis Kegiatan	Waktu Pelaksanaan (Bulan)							
		1	2	3	4	5	6	7	8
1	Observasi								
2	Desain alat uji								
3	Pembuatan alat uji								
4	Mempersiapkan material, alat dan bahan pengujian								
5	Pengabilan data								
6	Analisa data								
7	Publikasi								
8	Laporan								

DAFTAR PUSTAKA

- ASHRAE. (2009). *Fundamentals (SI)*. Atlanta, GA 30329: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
- Cecchinato, L., Chiarello, M., Corradi, M., Fornasieri, E., Minetto, S., Stringari, P., et al. (2009). Thermodynamic analysis of different two-stage transcritical carbon dioxide cycles. *International Journal Of Refrigerantion*, 1058 1067.
- Cengel, Y. A., & Boles, M. A. (2008). *Thermodynamics An Engineering Approach* (Fifth Edition ed.). McGraw-Hill.
- Domanski, P. A., Brown, J. S., Heo, J., Wojtusiak, J., & McLinden, M. O. (2013). A thermodynamic analysis of refrigerants: Performance limits of the vapor compression cycle. *International Journal of Refrigeration*, 1-9.
- Kim, S. G., Jo Kim, Y., Lee, G., & Kim, M. S. (2005). The performance of a transcritical CO2 cycle with an internal heat exchanger for hot water heating. *International Journal of Refrigeration*, 1064–1072.
- Liao, S., Cheng, Q., Jiang, D., and Gao, J. (2005). Experimental study of flammability limits of natural gas—air mixture. *Journal of Hazardous Materials*, 81-84.

Lampiran 1. Justifikasi Anggaran Penelitian

A. Honor								
Honor	Honor/Jam (Rp)	Waktu (jam/mgg)	Mingg	1	Hor	or per Tahun (Rp)		
Ketua	25.000	4	20			2.000.00		
Anggota	25.000	4	20			2.000.00		
			SUB TOTAL	(Rp)		4.000.00		
B. Peralatan penu	njang							
Material	Justifi Pemak		Kuantitas	_	a Satuan (Rp)	Harga Peralatan Penunjang (Rp)		
Kompresor	Media pene	litian	1 buah	1.	.300.000	1.300.00		
Kondensor	Media pene	litian	1 buah		500.000	500.00		
Receiver dryer	Media pene	litian	1 buah		75.000	75.00		
Evaporator	Media pene	litian	1 buah		300.000	300.00		
Katup ekspansi	Media pene	litian	1 buah		150.000	150.00		
Blower	Media pene	litian	1 buah		150.000	150.00		
Fan	Media pene	litian	1 buah		100.000	100.00		
Motor listrik	Media pene	litian	1 buah	2.	.500.000	2.500.00		
Pulley	Media pene	litian	1 buah		20.000	20.00		
Belt	Media pene	litian	3 buah		15.000	45.00		
Pressure gauge	Media pene	litian	4 buah		50.000	200.00		
sensor temperatur	Media pene	litian	8 buah		35.000	280.00		
Massaflow meter	Media pene	litian	1 buah	1.	.500.000	1.500.0		
Data logger	Media pene	litian	1 buah	3.	.500.000	3.500.0		
	·		SUI	в тот	AL (Rp)	10.620.00		
C. Bahan Habis P	akai							
Material	Justifi Pemak		Kuantitas		arga an (Rp)	Harga Bahan Habis Pakai (Rp)		
Elektroda las	Mengelas Ra	angka	1 dos	os		100.000		100.00
Kawat kuningan	Mengelas ko	omponen	2 batang		15.000	30.00		
Oli kompresor	Pelumas		1 botol		100.000	100.00		
Besi konstruksi	Konstruksi		2 batang		150.000	300.00		
Pipa tembaga	Pipa		2 m		150.000	300.0		
MUSICOOL-134	Refrigerant		1 tabung		750.000	700.00		
CO_2	Refrigerant		1 tabung		300.000	300.00		
			SUI	B TOT	AL (Rp)	1.830.00		

Perjalanan	Justifikasi	Kuantitas	Harga Satuan	Biaya per
	Perjalanan		(Rp)	Tahun
				(Rp)
Magelang -	Pengadaan material	2 kali	500.000	1.000.000
Semarang				
Magelang -	Pengadaan material	2 kali	250.00	500.000
Yogyakarta				
Yogyakarta			SUB TOTAL (Rp)	1.500.000
			SUB TOTAL (Rp)	1.500.000
Yogyakarta E. Lain-lain	1		SUB TOTAL (Rp)	1.500.000
	Justifikasi	Kuantitas	SUB TOTAL (Rp) Harga Satuan	1.500.000 Biaya per
E. Lain-lain	Justifikasi	Kuantitas		1.500.000 Biaya per Tahun
E. Lain-lain	Justifikasi	Kuantitas	Harga Satuan	Biaya per
E. Lain-lain	Justifikasi Dokumentasi	Kuantitas 1set	Harga Satuan	Biaya per Tahun
E. Lain-lain Kegiatan			Harga Satuan (Rp)	Biaya per Tahun (Rp)
E. Lain-lain Kegiatan Dokumentasi	Dokumentasi	1set	Harga Satuan (Rp)	Biaya per Tahun (Rp) 300.000

Lampiran 2. Susunan organisasi tim peneliti dan pembagian tugas

No	Nama/NIDN	Asal instansi	Bidang ilmu	Alokasi waktu per-minggu	Uraian tugas
1	Bagiyo Condro P, ST., M.Eng NIDN. 0617017605	Universitas Muhammadiyah Magelang	Teknik Otomotif	4 jam	 Mengorganisasi pelaksanaan penelitian. Mengatur dan mengelola jadwal dan sumber daya penelitian. Mendesain alat uji Membuat rancangan percobaan. Mengolah data
2	Muji Setiyo, ST, MT NIDN. 0616127102	Universitas Muhammadiyah Magelang	Teknik Otomotif	4 jam	 Observasi Membuat alat uji Mengadakan material. Menguji mesin Mengambil data Menganalisis data

Lampiran 3. Biodata ketua dan anggota

Biodata Ketua Pelaksana

A. Identitas Diri

1	Nama Lengkap (dengan gelar)	Bagiyo Condro Purnomo, ST., M.Eng.	
2	Jenis Kelamin	Laki-laki	
3	Jabatan Fungsional	Asisten Ahli	
4	NIS	087606031	
5	NIDN	0617017605	
6	Tempat dan Tanggal Lahir	Magelang, 17 Januari 1976	
7	E-mail	superbgy@yahoo.com	
8	Nomor Telepon/HP	081392778707	
9	Alamat Kantor	Jln. Mayjend. Bambang Sugeng Km. 5, Mertoyudan Magelang, Jateng	
10	Nomor Telepon	(0293) 326945	
	_	1. Automotive Thermodynamic	
		2. Heat Transfer	
11	Moto Kylich yong diampy 3. Combution and Control Emission		
11	Mata Kunan yang diampu	Mata Kuliah yang diampu 4. Vehicle Dynamics	
		5. Fisika Dasar 1	
		6. Fisika Dasar 2	

B. Riwayat Pendidikan

	S-1	S-2
Nama Perguruan Tinggi	Universitas Diponegoro	Universitas Gadjah Mada
	Semarang	Yogyakarta
Bidang Ilmu	Konversi Energi	Konversi Energi
Tahun Masuk - Lulus	1995 - 2001	2012 - 2015
Judul Skripsi/Tesis	Perencanaan Vacum	Analisa Performa Sistem
	Cleanner Berfilter Air	Refrigerasi Kompresi
	Dengan Penggerak	Uap Dengan Refrigeran
	Kompresor	Campuran Musicool Dan
		CO ₂ Aplikasi AC Mobil
Nama Pembimbing/	Ir. Sudargana, MT	Dr. Ir. Suhanan, DEA
Promotor		

C. Pengalaman Penelitian dalam 5 Tahun Terakhir

No.	Tahun	Judul Penelitian	Pendar	aan
			Sumber	Biaya
				(Juta Rp)
1	2014	Komparasi Performa Sistem	Universitas	6.000.000
		Refrigerasi AC Mobil dengan	Muhammadiyah	
		Refrigeran R-134a terhadap	magelang	
		Musicool 134		
2	2013	Tinjauan faktor pengotoran	Universitas	6.000.000
		(fouling) terhadap Prestasi	Muhammadiyah	
		radiator pada sistem pendingin	magelang	
		mobil		
3	2012	RISET UNGGULAN DAERAH	Pemerintah	15.000.000
		(RUD): Pemanfaatan LPG	Kota Magelang	
		Kemasan 12 Kg Sebagai Bahan		
		Bakar Kendaraan Konvensional		
		dan Penerapan Sirkuit <i>De-Ignition</i>		
4	2009	Sebagai Rangkaian Pengaman Pengaruh Pemajuan Timing Valve	Mandiri	4.000.000
'	2007	Terhadap Torsi dan Daya Mesin	1714HGH1	1.000.000
		(Studi Kasus pada Honda GL		
		Neotech 160 cc)		

D. Pengalaman Pengabdian Kepada Masyarakat dalam 5 Tahun Terakhir

No.	Tahun	Judul Pengabdian Kepada	Pendana	an
		Masyarakat	Sumber	Biaya
				(Juta Rp)
1	2014	Fasilitasi Lomba Kompetensi Siswa	MKKS Kabupaten	21.000.000
		(LKS) Bidang Otomotif Tingkat	Magelang,	
		SMK Se-Kabupaten Magelang	Univesitas	
		untuk Kualifikasi Tingkat Provinsi	Muhammadiyah	
		Tahun 2014	magelang	
2	2013	Fasilitasi Lomba Kompetensi Siswa	MKKS Kabupaten	15.000.000
		(LKS) Bidang Otomotif Tingkat	Magelang,	
		SMK Se-Kabupaten Magelang	Univesitas	
		untuk Kualifikasi Tingkat Provinsi	Muhammadiyah	
		Tahun 2013	magelang	
3	2013	Instruktur Peningkatan	Disnakertransos	10.000.000
		Keterampilan Bagi Anak Putus	Kota Magelang	
		Sekolah Luar Balai (Kerjasama		
		FT-UMM dengan Dinas Sosial		
		Propinsi Jawa Tengah)		

Fasilitasi Lomba Kompetensi Siswa (LKS) Bidang Otomotif Tingkat Magelang, SMK Se-Kabupaten Magelang untuk Kualifikasi Tingkat Provinsi Tahun 2012 Muhammadiyah magelang Pengelola dan Instruktur Kegiatan Pendidikan dan Pelatihan Keterampilan Berusaha Bagi Eks Penyandang Penyakit Sosial (Napi) Dengan Jenis Pelatihan Mekanik Sepeda Motor	15.000.000
SMK Se-Kabupaten Magelang untuk Kualifikasi Tingkat Provinsi Tahun 2012 Muhammadiyah magelang Pengelola dan Instruktur Kegiatan Pendidikan dan Pelatihan Keterampilan Berusaha Bagi Eks Penyandang Penyakit Sosial (Napi) Dengan Jenis Pelatihan	15.000.000
untuk Kualifikasi Tingkat Provinsi Tahun 2012 Pengelola dan Instruktur Kegiatan Pendidikan dan Pelatihan Keterampilan Berusaha Bagi Eks Penyandang Penyakit Sosial (Napi) Dengan Jenis Pelatihan	15.000.000
Tahun 2012 magelang 4 2012 Pengelola dan Instruktur Kegiatan Pendidikan dan Pelatihan Keterampilan Berusaha Bagi Eks Penyandang Penyakit Sosial (Napi) Dengan Jenis Pelatihan	15.000.000
4 2012 Pengelola dan Instruktur Kegiatan Pendidikan dan Pelatihan Keterampilan Berusaha Bagi Eks Penyandang Penyakit Sosial (Napi) Dengan Jenis Pelatihan	15.000.000
Pendidikan dan Pelatihan Keterampilan Berusaha Bagi Eks Penyandang Penyakit Sosial (Napi) Dengan Jenis Pelatihan Kota Magelang Kota Magelang	13.000.000
Keterampilan Berusaha Bagi Eks Penyandang Penyakit Sosial (Napi) Dengan Jenis Pelatihan	
Penyandang Penyakit Sosial (Napi) Dengan Jenis Pelatihan	
(Napi) Dengan Jenis Pelatihan	
WICKAIIIK SCPCUA WIOLOI	
(Kerjasama FT-UMM	
Disnakertransos Kota Magelang)	
5 2012 Pengelola dan Instruktur Program Disnakertransos	60.000.000
Pelatihan Mekanik Sepeda Motor Kota Magelang	
& Mobil (Kerjasama FT-UMM	
dengan Dinas Tenaga Kerja,	
Transmigrasi, dan sosial Kota	
Magelang)	20.000.000
6 2011 Pengelola dan Instruktur Disnakertransos	30.000.000
Pendidikan dan pelatihan Kota Magelang	
Keterampilan montir sepeda	
motor bagi pencari kerja Kota Magelang (Kerjasama FT-UMM	
Disnakertransos Kota Magelang)	
7 2010 Pengelola dan Instruktur Disnakertransos	30.000.000
Pendidikan dan pelatihan Kota Magelang	30.000.000
keterampilan montir sepeda motor	
bagi pencari kerja Kota Magelang	
(Kerjasama FT-UMM	
Disnakertransos Kota Magelang)	

E. Publikasi Artikel Ilmiah Dalam Jurnal dalam 5 Tahun Terakhir

No.	Judul Artikel Ilmiah	Volume/	Nama Jurnal
		Nomor/Tahun	
1	-	-	-

F. Pemakalah Seminar Ilmiah (Oral Presentation) dalam 5 Tahun Terakhir

No.	Nama Pertemuan	Judul Artikel Ilmiah	Waktu dan
	Ilmiah / Seminar		Tempat
1.	Seminar Nasional	Pemajuan Valve Timing Terhadap	Universitas
	Sains dan Teknologi	Peningkatan Perbandingan	Wahid
		Kompresi Aktual, Torsi dan	Haysim
		Daya; Upaya Untuk	Semarang (2010)
		Meningkatkan Unjuk Kerja Mesin	
2	Seminar Nasional	Investigasi Penurunan Daya	FT-UMJ, 14
	Sains dan Teknologi	Mobil Berbahan Bakar LPG	November 2014
		Melalui Pengukuran Efisiensi	
		Volumetrik	
3	Seminar Nasional	Komparasi Performa Sistem	Sekolah Tinggi
	Rekayasa Teknologi	Refrigerasi AC Mobil dengan	Teknologi
	Industri dan Informasi	Refrigeran R-134a terhadap	Nasional
		Musicool 134	Yogyakarta,
			Desember 2014

G. Karya Buku dalam 5 Tahun Terakhir

No	Judul Buku	Tahun	Jumlah Halaman	Penerbit
1	-	-	-	-

H. Perolehan HKI Dalam 5 – 10 Tahun Terakhir

No	Judul / Tema HKI	Tahun	Jenis	Nomor P/ID
1	Mesin Pembelah Tahu	2010	Paten	S00201200112

I. Pengalaman Merumuskan Kebijakan Publik/Rekayasa Sosial Lainnya dalam 5 Tahun Terakhir

No.	Judul/Tema/Jenis Rekayasa	Tahun	Tempat	Respon
	Sosial Lainnya yang telah Diterapkan		Penerapan	Masyarakat
1	-	-	-	-

J. Penghargaan dalam 10 Tahun Terakhir (dari pemerintah, asosiasi atau institusi lainnya)

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1	KRENOVA	Pemerintah Kota	2012
		Magelang	

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak-sesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Ipteks bagi Masyarakat.

Magelang, April 2015

Pengusul,

Bagiyo Condro P. ST., M.Eng.

Biodata Anggota Pelaksana

A. Identitas Diri

	A. Iuchitas Diri			
1	Nama Lengkap (dengan gelar)	Muji Setiyo, ST., MT.		
2	Jenis Kelamin	L		
3	Jabatan Fungsional	Asisten Ahli		
4	NIP/NIK/Identitas lainnya	108306043		
5	NIDN	0627038302		
6	Tempat dan Tanggal Lahir	Temanggung, 27 Maret 1983		
7	E-mail	setiyo.muji@gmail.com		
9	Nomor Telepon/HP	081328648046		
10	Alamat Kantor	Jl. Mayjend Bambang Soegeng km. 05 Mertoyudan Magelang		
11	Nomor Telepon/Faks	0293 326945		
12	Lulusan yang telah dihasilkan	D-3 = 20 orang S-1 =0 orang; S-2 = 0 orang; S-3 = 0 orang		
13	Mata Kuliah yang diampu	1. Electronic Fuel Injection System		
	·	2. Basic Automotive		
		3. Sistem Pengendali Kendaraan		

B. Riwayat Pendidikan

	D3	S1	S2
Nama Perguruan	Universitas	Universitas	Universitas Pancasila
Tinggi	Muhammadiyah	Muhammadiyah	Jakarta
	Magelang	Yogyakarta	
Bidang Ilmu	Teknik Otomotif	Teknik Mesin	Teknik Mesin
Tahun Masuk-Lulus	2002-2006	2007-2009	2010-2012
Judul Skripsi/ Tesis/	Rancang Bangun	Kaji Eksperimen	Optimasi Prestasi
Disertasi	Auxiliary Recervoir	Penambahan	Mesin Dengan Bahan
	yang Dilengkapi	Elektroliser pada	Bakar LPG Melalui
	dengan Magnetic	Mesin Empat Tak	Penyetelan Converter
	Sedimenter pada	Terhadap Unjuk	Kits dan Penyesuaian
	Sistem Pelumasan	Kerja Mesin dan	Saat Pengapian.
	Sepeda Motor 4 Tak	Emisi Gas Buang.	
Nama Pembimbing/	1. Ir. Moehamad	1. Ir. Sudarja, MT	Prof. Dr. Ir. Prawoto,
Promotor	Aman, MT	2. Wahyudi, ST, MT.	M.Sae.
	2. Agus Bagyono, ST		

C. Pengalaman Penelitian Dalam 5 Tahun Terakhir

No	Tahun	Judul Penelitian	Pendanaan	
			Sumber	Jumlah
				(juta Rp)
1.	2009	Pengaruh Pemajuan <i>Timing Valve</i> Terhadap	Mandiri	4
		Torsi dan Daya Mesin.		
2.	2012	ISET UNGGULAN DAERAH (RUD):	Pemerintah	15
		Pemanfaatan LPG Kemasan 12 Kg Sebagai	Kota	
		Bahan Bakar Kendaraan Konvensional dan	Magelang	
		Penerapan Sirkuit De-Ignition Sebagai		
		Rangkaian Pengaman		
3	2012	HIBAH PENELITIAN LP3M UMM:	LP3M	4
		Penerapan Sirkuit Fuel Cut Off pada Mesin	Univ.Muh.	
		Berbahan Bakar LPG	Magelang	
4	2013	INSENTIF RISET SISTEM INOVASI	Kementerian	220
		NASIONAL: Desain Coupling dan Mixer	Riset dan	
		Variable Untuk Mempercepat Pemanfaatan	Teknologi	
		LPG Sebagai Bahan Bakar Angkutan		
		Umum Serta Pemilihan Vaporizer Yang		
		Sesuai		

D. Pengalaman Pengabdian Kepada Masyarakat dalam 5 Tahun Terakhir

No	Tahun	Judul Pengabdian	Pendanaan	
			Sumber	Jumlah
				(juta Rp)
1	2010	Pengelola dan Instruktur Pendidikan dan	Disnakertransos	30
		pelatihan keterampilan montir sepeda	Kota Magelang	
		motor bagi pencari kerja Kota Magelang		
		(Kerjasama FT-UMM Disnakertransos		
		Kota Magelang)		
2	2011	Pengelola dan Instruktur Pendidikan dan	Disnakertransos	30
		pelatihan Keterampilan montir sepeda	Kota Magelang	
		motor bagi pencari kerja Kota Magelang		
		(Kerjasama FT-UMM Disnakertransos		
		Kota Magelang)		
3	2012	Pengelola dan Instruktur Program	Disnakertransos	60
		Pelatihan Mekanik Sepeda Motor &	Kota Magelang	
		Mobil (Kerjasama FT-UMM dengan		
		Dinas Tenaga Kerja, Transmigrasi, dan		
		sosial Kota Magelang)		
4	2012	Pengelola dan Instruktur Kegiatan	Disnakertransos	15
		Pendidikan dan Pelatihan Keterampilan	Kota Magelang	
		Berusaha Bagi Eks Penyandang		
		Penyakit Sosial (Napi) Dengan Jenis		
		Pelatihan Mekanik Sepeda Motor		
		(Kerjasama FT-UMM Disnakertransos		
		Kota Magelang)		

5	2013	Instruktur Peningkatan Keterampilan	Disnakertransos	10
		Bagi Anak Putus Sekolah Luar Balai	Kota Magelang	
		(Kerjasama FT-UMM dengan Dinas		
		Sosial Propinsi Jawa Tengah)		

E. Publikasi Artikel Ilmiah Dalam Jurnal dalam 5 Tahun Terakhir

No	Judul Artikel	Nama Jurnal	Volume/Nomor/Tahun
1	Pemanfaatan LPG sebagai	Jurnal Kajian	ISSN: 2087-1449/ No.2
	bahan bakar Kendaraan	Permasalahan dan	Vol 12/ Tahun 2012 Jml
	kaitannya dengan sistem	Isu - Isu Strategis	halaman: 11 (hal 63 - hal
	pendinginan mobil	Daerah	73)

F. Pemakalah Seminar Ilmiah (Oral Presentation) dalam 5 Tahun Terakhir

No	Nama Pertemuan Ilmiah/ Seminar	Judul Artikel Ilmiah	Waktu dan Tempat
1.	Seminar Nasional Sains dan Teknologi	Pemajuan Valve Timing Terhadap Peningkatan Perbandingan Kompresi Aktual, Torsi dan Daya; Upaya Untuk Meningkatkan Unjuk Kerja Mesin	Waktu : Tahun 2010 Tempat : Universitas Wahid Haysim - Semarang
2.	Seminar Nasional Teknik Mesin 7.	Optimasi Prestasi Mesin Bensin 1500 cc Dengan Bahan Bakar LPG Melalui penyetelan Konverter Kits dan Penyesuaian Saat Pengapian	Waktu: Tahun 2012 Tempat: Universitas Kristen Petra - Surabaya
3	Seminnr Nasional Efisiensi Energi Untuk Peningkatan Daya Saing Industri Manufaktur & Otomotif (SNEEMO)	Pemanfaatan LPG Kemasan 12 kg sebagai Bahan Bakar Kendaraan dan Optimasinya	Waktu : Tahun 2012 Tempat : Politeknik Manufaktur Astra - Jakarta
4	Seminar Insentif Riset SINas, Kementerian Riset dan Teknologi	Pengembangan Coupling dan Mixer Variabel Untuk Kendaraan Berbahan Bakar LPG	Waktu : Tahun 2013 Tempat : Gran Sahid Hotel - Jakarta
5	Seminar Nasional TEKNOIN	Karakteristik Kurva Daya Mesin EFI 1,5 L Berbahan Bakar LPG Pada Berbagai Jenis Vaporizer	Waktu : Tahun 2013 Tempat : Universitas Islam Indonesia - Yogyakarta

G. Karya buku dalam 5 Tahun Terakhir

No	Judul Buku	Tahun	Jumlah	Penerbit
			halaman	
1	Menjadi Mekanik Spesialis	2010	190 + ix	CV Alfa Beta
	Kelistrikan Sepeda Motor			Bandung

H. Perolehan HKI dalam 5-10 Tahun Terakhir

No	Judul / Tema HKI	Tahun	Jenis	Nomor P/ID
1	N ' D 1 1 1 m 1	2010	D.	000201200112
1	Mesin Pembelah Tahu	2010	Paten	S00201200112
2	Alat Penyambung Nepel Tabung	2013 (proses	Paten	P00201304508
	Gas	pemeriksaan)		
3	Alat Pencampur Gas Untuk	2013 (proses	Paten	P00201304509
	Kendaraan Berbahan Bakar Gas	pemeriksaan)		

I. Penghargaan dalam 10 tahun Terakhir

No	Jenis Penghargaan	Institusi pemberi penghargaan	Tahun
1	KRENOVA	Pemerintah Kota Magelang	2012
2	Penghargaan Akademisi (Dosen)	Universitas Muhammadiyah	2013
	Berprestasi	Magelang	

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak-sesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah Penelitian Dosen Pemula.

Magelang, April 2015

Pengusul,

(Muji Setiyo, ST, MT)

Lampiran 4. Surat pernyataan ketua peneliti.

Universitas Muhammadiyah Magelang

Lembaga Penelitian Pengembangan dan Pengabdian kepada Masyarakat (LP3M)

Gedung Rektorat Lantai 3 Kampus 2

Jalan Mayjen Bambang Soegeng Km 5 Mertoyudan Magelang 56172 Telp 0293 326945 ext 132 Fax 0293 325554 Website http://lp3m.ummgl.ac.id e-mail: lp3m@ummgl.ac.id

SURAT PERNYATAAN KETUA PENELITI/PELAKSANA

Yang bertanda tangan dibawah ini:

Nama : Bagiyo Condro Purnomo, ST., M.Eng

NIDN : 0617017605

Pangkat/Golongan : Penata Muda/III-a

Jabatan Fungsional : Asisten Ahli

Dengan ini menyatakan bahwa proposal saya dengan judul:

PENENTUAN PUTARAN BLOWER OPTIMUM SISTEM AC MOBIL DENGAN REFRIGERAN CAMPURAN MUSICOOL DAN CO₂

(Untuk Menunjang Program Penggunaan Refrigeran Ramah Lingkungan)

Yang diusulkan dalam skema Hibah Penelitian Dosen Pemula untuk tahun anggaran 2016 bersifat original dan belum pernah dibiayai oleh lembaga/sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya penelitian yang sudah saya terima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenarbenarnya.

> Mengetahui, Ketua LP3M,

(Dr. Suliswiyadi, M.Ag.) NIK. 966610111 Magelang, 29 April 2015

Yang menyatakan

Bagiyo Condro P., ST., M.Eng

NIK. 087606031